Frontal: 120 x 120 x 25 mm blue LED fan, 1300rpm, 17dBA
Trasero: 120 x 120 x 25 mm blue LED fan, 1300rpm, 17dBA
MATERIAL:
Drive Bays - 5.25' Drive Bay: 9 or 6- 3.5' Drive Bay: 1 (converted from one 5.25” drive bay) - 3.5 ' Drive Bay (Hidden)
COLOR: NEGROS
LOT EXPANSIÓN: 7P
Raton
Raton Logitech G9 - Laser
Características Tapas intercambiables: Las tapas XL y Precision se han diseñado para distintos estilos de juego. La tapa XL tiene textura satinada y un diseño más amplio para mayor comodidad de sujeción. La tapa Precision es más compacta y proporciona un mayor grado de control gracias a la tecnología DryGrip. Motor láser de 3.200 dpi con USB de velocidad máxima: Rapidez y precisión excepcionales con un motor láser especial para juego y respuesta inmediata del cursor con USB de velocidad máxima (hasta 1.000 señales/s). Configuración de juego portátil: Lleve a todas partes sus configuraciones preferidas. El ratón G9 tiene una memoria con capacidad para 5 perfiles (incluidas macros de teclado, valores de dpi y color de diodos) de modo que es posible jugar con su estilo propio en cualquier ordenador, sin instalar software adicional*.
Control Botón rueda de precisión MicroGear™: La tecnología de desplazamiento MicroGear™ exclusiva de Logitech permite el desplazamiento clic a clic, perfecto para la selección de armas. Y si lo prefiere, puede activar el modo ultrarrápido sin fricción. Sensibilidad ajustable: Opte por la precisión extrema o la aceleración vertiginosa sin interrumpir la acción. Sin instalar controladores, el ratón G9 ofrece acceso instantáneo a varios niveles de sensibilidad durante el juego, entre 200 y 3.200 dpi. Sistema de ajuste mediante pesas: ¿Cómo prefiere su ratón, pesado o ligero? Use la bandeja de lastre y pesas de metal que suman hasta 28 gramos. Pies de politetrafluoroetileno: Se deslizan fácilmente por cualquier superficie.
Comodidad y eficacia Diodos de color personalizados: Para indicar el nivel de sensibilidad y el perfil activos. Puede elegir entre cientos de colores. Opciones para mejor sujeción: Tapas intercambiables con aspecto y tacto diferentes.
Teclado
Especificaciones del producto: Fabricante: Razer Modelo: Tarantula Dimensiones (Alto x Largo x Ancho): 15 mm x 220 mm x 510 mm Peso:2,1 Kg Conexión:USB , jacks de audio y mic (bañados en oro) 104 teclas 20 funcionales
Teclas multimedia: 10 teclas intercambiables con dibujos
10 teclas específicas para macros retroiluminadas Memoria interna y latencia 32 Kb que permiten guardar hasta cinco perfiles
Latencia de 1 ms Inglés (EEUU) y alemán. No disponible en español Requerimientos del sistema Windows 2000/XP/XP 64/Media Center Edition 20052 puertos USB disponibles Unidad de CD-Rom para instalación de drivers Al menos 35 MB de espacio disponibles en el disco duro para los drivers Extras Tecnología anti-Ghosting (previene el uso simultáneo de múltiples teclas)Herramienta específica de intercambio de teclas
HUB USB de 2 puertos
Otros perifericos
Un teclado es un periférico o dispositivo que consiste en un sistema de teclas, como las de una máquina de escribir, que permite introducir datos a un ordenador o dispositivo digital. Cuando se presiona un carácter,se envía una entrada cifrada al ordenador, que entonces muestra el carácter en la pantalla. El término teclado numérico se refiere al conjunto de teclas con números que hay en el lado derecho de algunos teclados (no a los números en la fila superior, sobre las letras). Los teclados numéricos también se refieren a los números (y a las letras correspondientes) en los teléfonos móviles.
El mouse (del inglés, pronunciado [maʊs]) o ratón es un dispositivo apuntador, generalmente fabricado en plástico. Se utiliza con una de las manos del usuario y detecta su movimiento relativo en dos dimensiones por la superficie plana en la que se apoya, reflejándose habitualmente a través de un puntero o flecha en el monitor.
Una cámara web o web cam es una pequeña cámara digital conectada a una computadora, la cual puede capturar imágenes y transmitirlas a través de Internet en directo, ya sea a una página web o a otra u otras computadoras de forma privada. Las webcams necesitan una computadora para transmitir las imágenes. Sin embargo, existen otras cámaras autónomas que tan sólo necesitan un punto de acceso a la red informática, bien sea ethernet o inalámbrico. Para diferenciarlas de la webcam o cámaras de web se las denomina net cam o cámaras de red.
El escanneR
El escáner (del inglés scanner, el que explora o registra) es un aparato o dispositivo utilizado en Medicina, Electrónica e Informática, que explora el cuerpo humano, un espacio, imagenes o documentos. Su plural es escáneres (RAE). Se ha creado el verbo escanear, que significa 'pasar [algo] por un escáner', para obtener o "leer" imágenes (escáner de computador o de barras) o encontrar un objeto o señal (escáner de un aeropuerto, o de radio). Escáner significa: En Electrónica, "dispositivo óptico que reconoce caracteres o imágenes", y para referirse a este se emplea en ocasiones la expresión lector óptico (de caracteres). En Medicina. "aparato que produce una representación visual de secciones del cuerpo", "prueba realizada con este aparato" y "resultado de esta prueba". El aparato médico se llama también escanógrafo. Aparato que, por medio de ultrasonidos, resonancia magnética, radiaciones ionizantes o rayos X, produce una imagen de órganos o partes internas del cuerpo. Prueba o exploración realizada con un escáner (‖ aparato que produce una imagen interna del cuerpo). El escáner utilizado en Informática, clasificado como un dispositivo o periférico de entrada, es un aparato electrónico, que explora o permite "escanear" o "digitalizar" imágenes o documentos, y lo traduce en señales eléctricas para su procesamiento y, salida o almacenamiento.
ImpresoRa
Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen un interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red. Las impresoras suelen diseñarse para realizar trabajos repetitivos de poco volumen, que no requieran virtualmente un tiempo de configuración para conseguir una copia de un determinado documento. Sin embargo, las impresoras son generalmente dispositivos lentos (10 páginas por minuto es considerado rápido), y el coste por página es relativamente alto.
martes, 3 de marzo de 2009
Memoria RAM
La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
Proceso de carga en la memoria RAM:
Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas enmemoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la memoria, ayuda a mejorar las prestaciones del sistema..
La diferencia entre la RAM yotros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que la RAM es mucho más rápida, y se borra al apagar el ordenador. Es una memoria dinámica, lo que indica la necesidad de “recordar” los datos ala memoria cada pequeños periodos de tiempo, para impedir que esta pierda lainformación. Eso se llama Refresco. Cuando se pierde la alimentación, la memoria pierde todos los datos. “Random Access”, acceso aleatorio, indica que cada posición de memoria puede ser leída o escrita en cualquier orden. Lo contrario seria el accesosecuencial, en el cual los datos tienen que ser leídos o escritos en un orden predeterminado.
Las memorias poseen la ventaja de contar con una mayor velocidad, mayor capacidad de almacenamiento y un menor consumo. En contra partida presentan el CPU, Memoria y Disco Duro. Los datos de instrucciones cuando se carga un programa, se carga en memoria. (DMA) El inconveniente es de que precisan una electrónica especial para su utilización, la función de esta electrónica es generar el refresco de la memoria. La necesidad de los refrescos de las memorias dinámicas se debe al funcionamiento de las mismas, ya que este se basa en generar durante un tiempo la información que contiene. Transcurrido este lapso, la señal que contenía la célula biestable se va perdiendo. Para que no ocurra esta perdida, es necesario que antes que transcurra el tiempo máximo que la memoria puede mantener la señal se realice una lectura del valor que tiene y se recargue la misma. Es preciso considerar que a cada bit de la memoria le corresponde un pequeño condensador al que le aplicamos una pequeña carga eléctrica y que mantienen durante un tiempo en función de la constante de descarga. Generalmente el refresco de memoria se realiza cíclicamente y cuando esta trabajando el DMA. El refresco de la memoria en modo normal esta a cargo del controlador del canal que también cumple la función de optimizar el tiempo requerido para la operación del refresco. Posiblemente, en más de una ocasión en el ordenador aparecen errores de en la memoria debido a que las memorias que se están utilizando son de una velocidad inadecuada que se descargan antes de poder ser refrescadas.
Las posiciones de memoria están organizadas en filas y en columnas. Cuando se quiere acceder a la RAM se debe empezar especificando la fila, después la columna y por último se debe indicar si deseamos escribir o leer en esa posición. En ese momento la RAM coloca los datos de esa posición en la salida, si el acceso es de lectura o coge los datos y los almacena en la posición seleccionada, si el acceso es de escritura. La cantidad de memoria Ram de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobretodo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro. Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles. Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de 60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos). Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns. Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.
Tipos de memorias RAM
DRAM: Acrónimo de “Dynamic Random Access Memory”, o simplemente RAM ya que es la original, y por tanto la más lenta. Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, la más rápida es la de 70 ns. Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
FPM (Fast Page Mode): A veces llamada DRAM, puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns. Es lo que se da en llamar la RAM normal o estándar. Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486). Para acceder a este tipo de memoria se debe especificar la fila (página) y seguidamente la columna. Para los sucesivos accesos de la misma fila sólo es necesario especificar la columna, quedando la columna seleccionada desde el primer acceso. Esto hace que el tiempo de acceso en la misma fila (página) sea mucho más rápido. Era el tipo de memoria normal en los ordenadores 386, 486 y los primeros Pentium y llegó a alcanzar velocidades de hasta 60 ns. Se presentaba en módulos SIMM de 30 contactos (16 bits) para los 386 y 486 y en módulos de 72 contactos (32 bits) para las últimas placas 486 y las placas para Pentium.
EDO o EDO-RAM: Extended Data Output-RAM. Evoluciona de la FPM. Permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos). Mientras que la memoria tipo FPM sólo podía acceder a un solo byte (una instrucción o valor) de información de cada vez, la memoria EDO permite mover un bloque completo de memoria a la caché interna del procesador para un acceso más rápido por parte de éste. La estándar se encontraba con refrescos de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168. La ventaja de la memoria EDO es que mantiene los datos en la salida hasta el siguiente acceso a memoria. Esto permite al procesador ocuparse de otras tareas sin tener que atender a la lenta memoria. Esto es, el procesador selecciona la posición de memoria, realiza otras tareas y cuando vuelva a consultar la DRAM los datos en la salida seguirán siendo válidos. Se presenta en módulos SIMM de 72 contactos (32 bits) y módulos DIMM de 168 contactos (64 bits).
SDRAM: Sincronic-RAM. Es un tipo síncrono de memoria, que, lógicamente, se sincroniza con el procesador, es decir, el procesador puede obtener información en cada ciclo de reloj, sin estados de espera, como en el caso de los tipos anteriores. Sólo se presenta en forma de DIMMs de 168 contactos; es la opción para ordenadores nuevos. SDRAM funciona de manera totalmente diferente a FPM o EDO. DRAM, FPM y EDO transmiten los datos mediante señales de control, en la memoria SDRAM el acceso a los datos esta sincronizado con una señal de reloj externa. La memoria EDO está pensada para funcionar a una velocidad máxima de BUS de 66 Mhz, llegando a alcanzar 75MHz y 83 MHz, sin embargo, la memoria SDRAM puede aceptar velocidades de BUS de hasta 100 MHz, lo que dice mucho a favor de su estabilidad y ha llegado a alcanzar velocidades de 10 ns. Se presenta en módulos DIMM de 168 contactos (64 bits). El ser una memoria de 64 bits, implica que no es necesario instalar los módulos por parejas de módulos de igual tamaño, velocidad y marca
PC-100 DRAM: Este tipo de memoria, en principio con tecnología SDRAM, aunque también la habrá EDO. La especificación para esta memoria se basa sobre todo en el uso no sólo de chips de memoria de alta calidad, sino también en circuitos impresos de alta calidad de 6 o 8 capas, en vez de las habituales 4; en cuanto al circuito impreso este debe cumplir unas tolerancias mínimas de interferencia eléctrica; por último, los ciclos de memoria también deben cumplir unas especificaciones muy exigentes. De cara a evitar posibles confusiones, los módulos compatibles con este estándar deben estar identificados así: PC100-abc-def.
BEDO (burst Extended Data Output): Fue diseñada originalmente parasoportar mayores velocidades de BUS. Al igual que la memoria SDRAM, esta memoria es capaz de transferir datos al procesador en cada ciclo de reloj, pero no de forma continuada, como la anterior, sino a ráfagas (bursts), reduciendo, aunque no suprimiendo totalmente, los tiempos de espera del procesador para escribir o leer datos de memoria.
RDRAM (Direct Rambus DRAM): Es un tipo de memoria de 64 bits que puede producir ráfagas de 2ns y puede alcanzar tasas de transferencia de 533MHz, con picos de 1,6 GB/s. Pronto podrá verse en el mercado y es posible que tu próximo equipo tenga instalado este tipo de memoria. Es el componente ideal para las tarjetas gráficas AGP, evitando los cuellos de botella en la transferencia entre la tarjeta gráfica y la memoria de sistema durante el acceso directo a memoria (DIME) para el almacenamiento de texturas gráficas. Hoy en día la podemos encontrar en las consolas NINTENDO 64.
DDR SDRAM (Double Data Rate SDRAM SDRAM-II): Funciona a velocidades de 83, 100 y 125MHz, pudiendo doblar estas velocidades en la transferencia de datos a memoria. En un futuro, esta velocidad puede incluso llegar a triplicarse o cuadriplicarse, con lo que se adaptaría a los nuevos procesadores. Este tipo de memoria tiene la ventaja de ser una extensión de la memoria SDRAM, con lo que facilita su implementación por la mayoría de los fabricantes.
SLDRAM: Funcionará a velocidades de 400MHz, alcanzando en modo doble 800MHz, con transferencias de 800MB/s, llegando a alcanzar 1,6GHz, 3,2GHz en modo doble, y hasta 4GB/s de transferencia. Se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos.
ESDRAM: Este tipo de memoria funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hasta 3,2 GB/s. La memoria FPM (Fast Page Mode) y la memoria EDO también se utilizan en tarjetas gráficas, pero existen además otros tipos de memoria DRAM, pero que SÓLO de utilizan en TARJETAS GRÁFICAS, y son los siguientes:
MDRAM (Multibank DRAM) Es increíblemente rápida, con transferencias de hasta 1 GIGA/s, pero su coste también es muy elevado.
SGRAM (Synchronous Graphic RAM) Ofrece las sorprendentes capacidades de la memoria
SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D. -
VRAM Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo. -
WRAM (Window RAM) Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior. La arquitectura PC establece que los datos que constituyen una imagen a mostrar en el monitor no se mapeen en la RAM que podamos tener en la placa madre, sino en la memoria RAM que se encuentra en la propia tarjeta de vídeo. Por tanto, para concluir contar que con la introducción de procesadores más rápidos, las tecnologías FPM y EDO empezaron a ser un cuello de botella. La memoria más eficiente es la que trabaja a la misma velocidad que el procesador. Las velocidades de la DRAM FPM y EDO eran de 80, 70 y 60 ns, lo cual era suficientemente rápido para velocidades inferiores a 66MHz. Para procesadores lentos, por ejemplo el 486, la memoria FPM era suficiente. Con procesadores más rápidos, como los Pentium de primera generación, se utilizaban memorias EDO. Con los últimos procesadores Pentium de segunda y tercera generación, la memoria SDRAM es la mejor solución. La memoria más exigente es la PC100 (SDRAM a 100 MHz), necesaria para montar un AMD K6-2 o un Pentium a 350 MHz o más. Va a 100 MHz en vez de los 66 MHZ usuales.
Topologias de Redes
La topología de red o forma lógica de red se define como la cadena de comunicación que los nodos que conforman una red usan para comunicarse. Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo, pc o como quieran llamarle), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución de internet dando lugar a la creación de nuevas redes y/o subredes tanto internas como externas. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento.
En algunos casos se puede usar la palabra arquitectura en un sentido relajado para hablar a la vez de la disposición física del cableado y de cómo el protocolo considera dicho cableado. Así, en un anillo con una MAU podemos decir que tenemos una topología en anillo, o de que se trata de un anillo con topología en estrella. La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y/o los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.
viernes, 27 de febrero de 2009
Tipos de micRos
Han pasado más de 25 años desde que Intel diseñara el primer microprocesador, siendo la compañía pionera en el campo de la fabricación de estos productos, y que actualmente cuenta con más del 90 por ciento del mercado. Un tiempo en el que todo ha cambiado enormemente, y en el que desde aquel 4004 hasta el actual Pentium II hemos visto pasar varias generaciones de máquinas que nos han entretenido y nos han ayudado en el trabajo diario.
Microprocesador 386
El Intel 386 es un microprocesador CISC con arquitectura x86. Durante su diseño se le llamó P3, debido a que era el prototipo de la tercera generación x86. El i386 fue empleado como la unidad central de proceso de muchos ordenadores personales desde mediados de los años 80 hasta principios de los 90. Fabricado y diseñado por Intel, el procesador i386 fue lanzado al mercado el 16 de octubre de 1985. Intel estuvo en contra de fabricarlo antes de esa fecha debido a que los costes de producción lo hubieran hecho poco rentable. Los primeros procesadores fueron enviados a los clientes en 1986. Del mismo modo, las placas base para ordenadores basados en el i386 eran al principio muy elaboradas y caras, pero con el tiempo su diseño se racionalizó. En mayo de 2006 Intel anunció que la fabricación del 386 finalizaría en a finales de septiembre de 2007. Aunque ha quedado obsoleto como CPU de ordenador personal, Intel ha seguido fabricando el chip para sistemas empotrados y tecnología aeroespacial
Microprocesador 486
El 486 se diferencia del 386 en la integración en un solo chip del coprocesador 387. También se ha mejorado la velocidad de operación: la versión de 25 MHz dobla en términos reales a un 386 a 25 MHz equipado con el mismo tamaño de memoria caché. La versión 486sx no se diferencia en el tamaño del bus, también de 32 bits, sino en la ausencia del 387 (que puede ser añadido externamente). También existen versiones de 486 con buses de 16 bits, el primer fabricante de estos chips, denominados 486SLC, ha sido Cyrix. Una tendencia iniciada por el 486 fue la de duplicar la velocidad del reloj interno (pongamos por caso de 33 a 66 MHz) aunque en las comunicaciones con los buses exteriores se respeten los 33 MHz. Ello agiliza la ejecución de las instrucciones más largas: bajo DOS, el rendimiento general del sistema se puede considerar prácticamente el doble. Son los chips DX2 (también hay una variante a 50 MHz: 25 x 2). La culminación de esta tecnología viene de la mano de los DX4 a 75/100 MHz (25/33 x 3).
Microprocesador PENTIUM
El Pentium, último procesador de Intel en el momento de escribirse estas líneas, se diferencia respecto al 486 en el bus de datos (ahora de 64 bits, lo que agiliza los accesos a memoria) y en un elevadísimo nivel de optimización y segmentación que le permite, empleando compiladores optimizados, simultanear en muchos casos la ejecución de dos instrucciones consecutivas. Posee dos cachés internas, tiene capacidad para predecir el destino de los saltos y la unidad de coma flotante experimenta elevadas mejoras. Sin embargo, bajo DOS, un Pentium básico sólo es unas 2 veces más rápido que un 486 a la misma frecuencia de reloj. Comenzó en 60/90 MHz hasta los 166/200/233 MHz de las últimas versiones (Pentium Pro y MMX), que junto a diversos clones de otros fabricantes, mejoran aún más el rendimiento. Todos los equipos Pentium emplean las técnicas DX, ya que las placas base típicas corren a 60 MHz. Para hacerse una idea, por unas 200000 pts de 1997 un equipo Pentium MMX a 233 MHz es cerca de 2000 veces más rápido en aritmética entera que el IBM PC original de inicios de la década de los 80; en coma flotante la diferencia aumenta incluso algunos órdenes más de magnitud. Y a una fracción del coste (un millón de pts de aquel entonces que equivale a unos 2,5 millones de hoy en día). Aunque no hay que olvidar la revolución del resto de los componentes: 100 veces más memoria (central y de vídeo), 200 veces más grande el disco duro... y que un disco duro moderno transfiere datos 10 veces más deprisa que la memoria de aquel IBM PC original. Por desgracia, el software no ha mejorado el rendimiento, ni remotamente, en esa proporción: es la factura pasada por las técnicas de programación cada vez a un nivel más alto (aunque nadie discute sus ventajas).
Microprocesador PENTIUM I
Con el procesador Pentium II, se obtienen todos los últimos avances de la familia de microprocesadores de Intel: la potencia del procesador Pentium Pro más la riqueza en capacidad de la tecnología mejorada de medios MMX. El procesador Pentium II, entregando el más alto desempeño de Intel, tiene abundante capacidad de desempeño para medios, comunicaciones e Internet a nivel empresarial. Operando a 233 MHz y 266 MHz para desktops y servidores y a 300 MHz para estaciones de trabajo, el procesador utiliza la tecnología de alto desempeño Dual Independent Bus (Bus Dual Independiente) para entregar un amplio ancho de banda adecuado para su elevado poder de procesamiento. El diseño del cartucho Single Edge Contact (S.E.C) [Contacto de un Solo Canto] incluye 512KB de cache dedicada de nivel dos (L2). El procesador Pentium II también incluye 32KB de cache L1 (16K para datos, 16K para instrucciones), el doble de la del procesador Pentium Pro.
Microprocesador PENTIUM III En Marzo de 1999 apareció en el mercado el Pentium III, conocido en la etapa de proyecto como Katmai. Es un Pentium II mejorado, por lo que durante casi 2 años fue el microprocesador de bandera de Intel, pues, a las ventajas del Pentium II Xeon, incorpora nuevas instrucciones de microcódigo que mejoran la capacidad de manejo de 3-D (instrucciones Katmai). En un inicio el Pentium III se comercializó a 500 MHz, pero actualmente su velocidad supera el 1 GHz. Como miembro de la familia de procesadores P6, generación de procesadores que le sucedió a la línea Pentium de Intel se caracteriza por la implementación de la microarquitectura de ejecución dinámica, la cual incorpora una única combinación de la predicción de salto múltiple, análisis del flujo de datos y la ejecución especulativa. Esto hizo posible que la familia P6 tuviera un mayor rendimiento que la familia Pentium mientras mantenía la compatibilidad binaria con la arquitectura de los procesadores anteriores de Intel. La potencia de un procesador Intel® Pentium III, brinda desempeño y confiabilidad, que es mejor para la mayor parte de los consumidores y usuarios de negocios, a continuación las características que especifican el procesador Pentium III.
Microprocesador PENTIUM IIII
El Pentium 4 es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primer microprocesador con un diseño completamente nuevo desde el Pentium Pro de 1995. El Pentium 4 original, denominado Willamette, trabajaba a 1,4 y 1,5 GHz; y fue lanzado en noviembre de 2000. Para la sorpresa de la industria informática, el Pentium 4 no mejoró el viejo diseño P6 según las dos tradicionales formas para medir el rendimiento: velocidad en el proceso de enteros u operaciones de coma flotante. La estrategia de Intel fue sacrificar el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE. Al igual que la Pentium II y la Pentium III, el Pentium 4 se comercializa en una versión para equipos de bajo presupuesto (Celeron), y una orientada a servidores de gama alta (Xeon).
Microprocesador AMD
En 1997 AMD lanzó el microprocesador AMD K6. Éste procesador estaba diseñado para funcionar en placas base Pentium. La principal ventaja del AMD con respecto al Pentium era su precio, bastante más barato con las mismas prestaciones. El K6 tuvo una gran aceptación en el mercado presentándose como un rival fuerte para Intel. Su sucesor fue el microprocesador K6-2. Con el K6, AMD no sólo consiguió hacerle la competencia a Intel en el terreno de los Pentium MMX, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador que casi se pone a la altura del mismísimo Pentium II. En cuanto a potencia bruta, si comparamos sus prestaciones en la ejecución de software de 16 bits, vemos que la diferencia es escasa entre todos los procesadores, quedando como único rezagado el Pentium Pro. Si pasamos a los programas de 32 bits, aquí es al revés, y el que se lleva la palma es el Pentium Pro (El Pentium II puede vencerle sólo si lo comparamos con versiones a mayor velocidad), quedando el K6 algo por debajo del Pentium II, pero muy por encima del Pentium MMX e incluso del Cyrix 6x86. En cálculos en coma flotante, el K6 también queda por debajo del Pentium II, pero por encima del Pentium MMX y del Pro, y aquí el que se queda más rezagado como siempre es el Cyrix. El K6 cuenta con una gama que va desde los 166 hasta los 300 Mhz y con el juego de instrucciones MMX, que ya se han convertido en estándar.
martes, 24 de febrero de 2009
HISTORIA DE LA COMPUTACIÓN
Las computadoras son el epicentro de nuestras vidas. Están en nuestros escritorios, en nuestros bolsillos y aún en los tableros de nuestros autos. Las usamos para trabajar, para jugar, para la educación y para ordenar datos. Y sabemos que las computadoras han calado profundo en la cultura popular cuando Turner Broadcasting ha hecho una película acerca de ellas llamada "Los piratas de Silicon Valley". Pero, ¿cómo la raza humana a evolucionado a una especie tecnofílica? Las opiniones varían de extremo a extremo. Algunos dicen que fué Apple cuando en 1984 introdujo la MacIntosh -- "La computadora para el resto de nosotros" -- Otros dicen que empezó antes, con la primera PC de IBM. Algunos académicos apuntan a 1975 con la aparición de un kit de computadora por Altair en la portada "Popular Electronics". Este movimiento lanzó una pequeña empresa de programadores llamada Microsoft... Realmente no es ninguna de estas cosas. Hoy día cuando comemos RAM en el desayuno y nos traladamos en un conmutador DSL cada mañana, sabemos que la computación empezó mucho antes, alrededor del año 20,000 AC, de hecho. Hemos dependido por muchísimo tiempo de aparatos que hacen cálculos y otros trabajos que nuestro cerebro lo haría con gran esfuerzo.
Generaciones de Computadores.
Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre varillas, sus posiciones representan valores almacenados, y es mediante dichas posiciones que este representa y almacena datos. A este dispositivo no se le puede llamar computadora por carecer del elemento fundamental llamado programa. Otro de los inventos mecánicos fue la Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil.
Primera Generación de Computadores En esta generación había una gran desconocimiento de las capacidades de las computadoras, puesto que se realizó un estudio en esta época que determinó que con veinte computadoras se saturaría el mercado de los Estados Unidos en el campo de procesamiento de datos. Esta generación abarco la década de los cincuenta. Y se conoce como la primera generación. Estas máquinas tenían las siguientes características: Estas máquinas estaban construidas por medio de tubos de vacío. Eran programadas en lenguaje de máquina. En esta generación las máquinas son grandes y costosas (de un costo aproximado de ciento de miles de dólares). En 1951 aparece la UNIVAC (NIVersAl Computer), fue la primera computadora comercial, que disponía de mil palabras de memoria central y podían leer cintas magnéticas, se utilizó para procesar el censo de 1950 en los Estados Unidos. En las dos primeras generaciones, las unidades de entrada utilizaban tarjetas perforadas, retomadas por Herman Hollerith (1860 - 1929), quien además fundó una compañía que con el paso del tiempo se conocería como IBM (International Bussines Machines). Después se desarrolló por IBM la IBM 701 de la cual se entregaron 18 unidades entre 1953 y 1957. Posteriormente, la compañía Remington Rand fabricó el modelo 1103, que competía con la 701 en el campo científico, por lo que la IBM desarrollo la 702, la cual presentó problemas en memoria, debido a esto no duró en el mercado. La computadora más exitosa de la primera generación fue la IBM 650, de la cual se produjeron varios cientos. Esta computadora que usaba un esquema de memoria secundaria llamado tambor magnético, que es el antecesor de los discos actuales. Otros modelos de computadora que se pueden situar en los inicios de la segunda generación son: la UNIVAC 80 y 90, las IBM 704 y 709, Burroughs 220 y UNIVAC 1105.
Segunda Generación de Computadores Cerca de la década de 1960, las computadoras seguían evolucionando, se reducía su tamaño y crecía su capacidad de procesamiento. También en esta época se empezó a definir la forma de comunicarse con las computadoras, que recibía el nombre de programación de sistemas. Las características de la segunda generación son las siguientes: Están construidas con circuitos de transistores. Se programan en nuevos lenguajes llamados lenguajes de alto nivel. En esta generación las computadoras se reducen de tamaño y son de menor costo. Aparecen muchas compañías y las computadoras eran bastante avanzadas para su época como la serie 5000 de Burroughs y la ATLAS de la Universidad de Manchester. Algunas de estas computadoras se programaban con cintas perforadas y otras más por medio de cableado en un tablero. Los programas eran hechos a la medida por un equipo de expertos: analistas, diseñadores, programadores y operadores que se manejaban como una orquesta para resolver los problemas y cálculos solicitados por la administración. El usuario final de la información no tenía contacto directo con las computadoras. Esta situación en un principio se produjo en las primeras computadoras personales, pues se requería saberlas "programar" (alimentarle instrucciones) para obtener resultados; por lo tanto su uso estaba limitado a aquellos audaces pioneros que gustaran de pasar un buen número de horas escribiendo instrucciones, "corriendo" el programa resultante y verificando y corrigiendo los errores o bugs que aparecieran. Además, para no perder el "programa" resultante había que "guardarlo" (almacenarlo) en una grabadora de astte, pues en esa época no había discos flexibles y mucho menos discos duros para las PC; este procedimiento podía tomar de 10 a 45 minutos, según el programa. El panorama se modificó totalmente con la aparición de las computadoras personales con mejore circuitos, más memoria, unidades de disco flexible y sobre todo con la aparición de programas de aplicación general en donde el usuario compra el programa y se pone a trabajar. Aparecen los programas procesadores de palabras como el célebre Word Star, la impresionante hoja de cálculo (spreadsheet) Visicalc y otros más que de la noche a la mañana cambian la imagen de la PC. El sortware empieza a tratar de alcanzar el paso del hardware. Pero aquí aparece un nuevo elemento: El usuario de las computadoras va cambiando y evolucionando con el tiempo. De estar totalmente desconectado a ellas en las máquinas grandes pasa la PC a ser pieza clave en el diseño tanto del hardware como del software. Aparece el concepto de human interface que es la relación entre el usuario y su computadora. Se habla entonces de hardware ergonómico (adaptado a las dimensiones humanas para reducir el cansancio), diseños de pantallas antirreflejos y teclados que descansen la muñeca. Con respecto al software se inicia una verdadera carrera para encontrar la manera en que el usuario pase menos tiempo capacitándose y entrenándose y más tiempo produciendo. Se ponen al alcance programas con menús (listas de opciones) que orientan en todo momento al usuario (con el consiguiente aburrimiento de los usuarios expertos); otros programas ofrecen toda una artillería de teclas de control y teclas de funciones (atajos) para efectuar toda suerte de efectos en el trabajo (con la consiguiente desorientación de los usuarios novatos). Se ofrecen un sinnúmero de cursos prometiendo que en pocas semanas hacen de cualquier persona un experto en los programas comerciales. Pero el problema "constante" es que ninguna solución para el uso de los programas es "constante". Cada nuevo programa requiere aprender nuevos controles, nuevos trucos, nuevos menús. Se empieza a sentir que la relación usuario-PC no está acorde con los desarrollos del equipo y de la potencia de los programas. Hace falta una relación amistosa entre el usuario y la PC. Las computadoras de esta generación fueron: la Philco 212 (esta compañía se retiró del mercado en 1964) y la UNIVAC M460, la Control Data Corporation modelo 1604, seguida por la serie 3000, la IBM mejoró la 709 y sacó al mercado la 7090, la National Cash Register empezó a producir máquinas para proceso de datos de tipo comercial, introdujo el modelo NCR 315. La Radio Corporation of America introdujo el modelo 501, que manejaba el lenguaje COBOL, para procesos administrativos y comerciales. Después salió al mercado la RCA 601.
Tercera generación de Computadores Con los progresos de la electrónica y los avances de comunicación con las computadoras en la década de los 1960, surge la tercera generación de las computadoras. Se inaugura con la IBM 360 en abril de 1964. Las características de esta generación fueron las siguientes: - Su fabricación electrónica esta basada en circuitos integrados. - Su manejo es por medio de los lenguajes de control de los sistemas operativos. La IBM produce la serie 360 con los modelos 20, 22, 30, 40, 50, 65, 67, 75, 85, 90, 195 que utilizaban técnicas especiales del procesador, unidades de cinta de nueve canales, paquetes de discos magnéticos y otras características que ahora son estándares (no todos los modelos usaban estas técnicas, sino que estaba dividido por aplicaciones). El sistema operativo de la serie 360, se llamó OS que contaba con varias configuraciones, incluía un conjunto de técnicas de manejo de memoria y del procesador que pronto se convirtieron en estándares. En 1964 CDC introdujo la serie 6000 con la computadora 6600 que se consideró durante algunos años como la más rápida. En la década de 1970, la IBM produce la serie 370 (modelos 115, 125, 135, 145, 158, 168). UNIVAC compite son los modelos 1108 y 1110, máquinas en gran escala; mientras que CDC produce su serie 7000 con el modelo 7600. Estas computadoras se caracterizan por ser muy potentes y veloces. A finales de esta década la IBM de su serie 370 produce los modelos 3031, 3033, 4341. Burroughs con su serie 6000 produce los modelos 6500 y 6700 de avanzado diseño, que se reemplazaron por su serie 7000. Honey - Well participa con su computadora DPS con varios modelos. A mediados de la década de 1970, aparecen en el mercado las computadoras de tamaño mediano, o minicomputadoras que no son tan costosas como las grandes (llamadas también como mainframes que significa también, gran sistema), pero disponen de gran capacidad de procesamiento. Algunas minicomputadoras fueron las siguientes: la PDP - 8 y la PDP - 11 de Digital Equipment Corporation, la VAX (Virtual Address eXtended) de la misma compañía, los modelos NOVA y ECLIPSE de Data General, la serie 3000 y 9000 de Hewlett - Packard con varios modelos el 36 y el 34, la Wang y Honey - Well -Bull, Siemens de origen alemán, la ICL fabricada en Inglaterra. En la Unión Soviética se utilizó la US (Sistema Unificado, Ryad) que ha pasado por varias generaciones.
Cuarta Generación de Computadores Aquí aparecen los microprocesadores que es un gran adelanto de la microelectrónica, son circuitos integrados de alta densidad y con una velocidad impresionante. Las microcomputadoras con base en estos circuitos son extremadamente pequeñas y baratas, por lo que su uso se extiende al mercado industrial. Aquí nacen las computadoras personales que han adquirido proporciones enormes y que han influido en la sociedad en general sobre la llamada "revolución informática". En 1976 Steve Wozniak y Steve Jobs inventan la primera microcomputadora de uso masivo y más tarde forman la compañía conocida como la Apple que fue la segunda compañía más grande del mundo, antecedida tan solo por IBM; y esta por su parte es aún de las cinco compañías más grandes del mundo. En 1981 se vendieron 800 00 computadoras personales, al siguiente subió a 1 400 000. Entre 1984 y 1987 se vendieron alrededor de 60 millones de computadoras personales, por lo que no queda duda que su impacto y penetración han sido enormes. Con el surgimiento de las computadoras personales, el software y los sistemas que con ellas de manejan han tenido un considerable avance, porque han hecho más interactiva la comunicación con el usuario. Surgen otras aplicaciones como los procesadores de palabra, las hojas electrónicas de cálculo, paquetes gráficos, etc. También las industrias del Software de las computadoras personales crece con gran rapidez, Gary Kildall y William Gates se dedicaron durante años a la creación de sistemas operativos y métodos para lograr una utilización sencilla de las microcomputadoras (son los creadores de CP/M y de los productos de Microsoft). No todo son microcomputadoras, por su puesto, las minicomputadoras y los grandes sistemas continúan en desarrollo. De hecho las máquinas pequeñas rebasaban por mucho la capacidad de los grandes sistemas de 10 o 15 años antes, que requerían de instalaciones costosas y especiales, pero sería equivocado suponer que las grandes computadoras han desaparecido; por el contrario, su presencia era ya ineludible en prácticamente todas las esferas de control gubernamental, militar y de la gran industria. Las enormes computadoras de las series CDC, CRAY, Hitachi o IBM por ejemplo, eran capaces de atender a varios cientos de millones de operaciones por segundo.
Quinta Generación de Computadores En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados. Japón lanzó en 1983 el llamado "programa de la quinta generación de computadoras", con los objetivos explícitos de producir máquinas con innovaciones reales en los criterios mencionados. Y en los Estados Unidos ya está en actividad un programa en desarrollo que persigue objetivos semejantes, que pueden resumirse de la siguiente manera: Procesamiento en paralelo mediante arquitecturas y diseños especiales y circuitos de gran velocidad. Manejo de lenguaje natural y sistemas de inteligencia artificial. El futuro previsible de la computación es muy interesante, y se puede esperar que esta ciencia siga siendo objeto de atención prioritaria de gobiernos y de la sociedad en conjunto.
SEXTA GENERACION
En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados. De ahí salio la nueva y ultima generacion, que lleva desde principios del 2oo9 hasta ahora.. Con pantalla tactil, que no hace falta teclado con una alta velocidad y unos graficos increibles.
martes, 3 de febrero de 2009
LOS MICROCHIPS
Los microchips están hechos de silicio, y su producción lleva mucho tiempo. Con el objetivo de crear los patrones conductores actuales, se utilizan diversas técnicas para superponer otros materiales como aluminio o cobre, sobre la superficie de silicio. Cada partícula de polvo es demasiado: donde casi un billón de transistores se amontonan en apenas un centímetro cuadrado, cualquier contaminación, por pequeña que sea, resulta desastrosa. El norteamericano pionero en electrónica, Jack Kilby, que fue galardonado con el Premio Nobel de Física por su impactante trabajo en el año 2000, es considerado el inventor del microchip. El físico presentó su microchip al público en los laboratorios de Texas Instruments en 1958. Cinco transistores habían sido soldados sobre una pieza de germanio para crear un circuito – este chip tenía apenas el tamaño de un gancho para papeles. Las estructuras de los microchips se volvieron más y más pequeñas. Los fabricantes tuvieron éxito al duplicar el número de transistores en un chip cada 18 meses, tal como lo predijo la ley de Moore. Sin embargo, a medida que los tamaños se han reducido a escalas de átomos, los fabricantes se están acercando cada vez más a los límites de la miniaturización. Ha llegado el tiempo de probar acercamientos completamente nuevos. Para ésto, los investigadores están actualmente buscando soluciones tales como el uso de pequeños “mini tubos de carbón”, los cuales esperan utilizar en los microchips del futuro.
Hay dos tipos de fuentes de alimentacion: Las dos tipos de fuentes que podremos encontrarnos cuando abramos un ordenador pueden ser: AT o ATX
Las características de las fuentes AT, son que sus conectores a placa base varían de los utilizados en las fuentes ATX, y son más peligrosas, ya que la fuente se activa a través de un interruptor, y en ese interruptor hay un voltaje de 220v, con el riesgo que supondría manipular el PC.
Las AT son un tanto rudimentarias electrónicamente hablando, si las comparamos tecnológicamente con las ATX.La fuente ATX, siempre está activa, aunque el ordenador no esté funcionando, siempre está alimentada con una tensión pequeña en estado de espera.
Las fuentes ATX dispone de un pulsador conectado a la placa base, y esta se encarga de encender la fuente, esto nos permite el poder realizar conexiones/desconexiones por software.
Conexiones de la fuente de alimentTaciioN,,
En Fuentes AT, se daba el problema de que existian dos conectores a conectar a placa base, con lo cual podia dar lugar a confusiones y a cortocircuitos, la solución a ello es basarse en un truco muy sencillo, hay que dejar en el centro los cables negros que los dos conectores tienen, asi no hay forma posible de equivocarse.
En cambio, en las fuentes ATX solo existe un conector para la placa base, todo de una pieza, y solo hay una manera de encajarlo, así que por eso no hay problema Existen dos tipos de conectores para alimentar dispositivos:
El más grande, sirve para conectar dispositivos como discos duros, lectores de cd-rom, grabadoras, dispositivos SCSI, etc... Mientras que el otro, visiblemente más pequeño, sirve para alimentar por ejemplo disqueteras o algunos dispositivos ZIP.
En cambio, en las fuentes ATX solo existe un conector para la placa base, todo de una pieza, y solo hay una manera de encajarlo, así que por eso no hay problema.
Aqii teneiis algunos de los diferentes tipos de monitoRes,,
Monitor 15" AL507 TFT VGA 0.297 mm Blanco Tamaño de pantalla: 15” Tamaño de punto: 0.297 Resolución máxima: 1024x768 Color: Blanco Contraste: 350:1 Brillo (cd/m2): 250 Angulo visión vertical: Angulo visión horizontal: Tiempo respuesta: Otras características: Precio: 280 €
Monitor Samsung Syncmaster 152S 15" este modelo es el que podemos encontrar en el laboratorio donde se realizan las practicas. Tamaño de pantalla: 15” Tamaño de punto: 0.297mm Resolución máxima: 1024x768 Color: Blanco Contraste: 300:1 Brillo (cd/m2): 200 Angulo visión vertical: 110 Angulo visión horizontal: 120 Tiempo respuesta: Otras características: Precio: 322 €
Monitor TFT 15 sony HS53L Tamaño de pantalla: 15” Tamaño de punto: 0.297mm Resolución máxima: 1024x768 Color: Blanco y azul Contraste: 300:1 Brillo (cd/m2): 200 Angulo visión vertical: 110 Angulo visión horizontal: 120 Tiempo respuesta: Otras características: Precio: 399 €
Monitor TFT Sony HS73L Tamaño de pantalla: 17” Tamaño de punto: 0.264mm Resolución máxima: 1280x1024 Color: Blanco y azul Contraste: 500:1 Brillo (cd/m2): 260 Angulo visión vertical: Angulo visión horizontal: Tiempo respuesta: 16ms Otras características: Precio: 585 €
Monitor 19" SDM S93H TFT 0.294 mm Negro Tamaño de pantalla: 19” Tamaño de punto: 0.294mm Resolución máxima: 1280x1024 Color: Negro Contraste: 600:1 Brillo (cd/m2): 250 Angulo visión vertical: Angulo visión horizontal: Tiempo respuesta: Otras características: Precio: 807 €
MONITORES
MoniitoR
El monitor o pantalla de computadora, aunque también es común llamarle "pantalla", es un dispositivo de salida que, mediante una interfaz, muestra los resultados del procesamiento de una computadora.
Hay dos tipos principales de pantallas de sondas: pantallas CRT y las pantallas TFT
CRT (Catodic Ray Tube) es similar a una pantalla de televisión o monitor común (es decir que lleva el denominado tubo de imagen). Están disponibles en ambos modelos de color: monocromáticos y full color. Usando colores diferentes, se muestra la fuerza relativa del eco, distinguiendo más fácilmente entre tipos diferentes de objetivos. Con sol muy luminoso las CRT se deben usar con un visor o montado en una zona sombreada
TFT (Thin Film Transistors) son pantallas de cristal líquido pero que tienen un transistor para cada píxel. Usan tecnología de matriz activa y cada transistor (píxel) puede ser activado y desactivado más rápido. Son ideales para verlas a pleno sol, desde cualquier ángulo y a cualquier hora, ya que esta tecnología elimina cualquier reflejo por parte de otras fuentes luminosas.
viernes, 16 de enero de 2009
La placa baSe,, Muchos dispositivos de networking son de por sí computadores para fines especiales, que poseen varios de los mismos omponentes que los PC normales.
Para poder utilizar un computador como un medio confiable para obtener información, debe estar en buenas condiciones. Para mantener un PC en buenas condiciones es necesario realizar de vez en cuando el diagnóstico simple de fallas del hardware y del software del computador. Por lo tanto, es necesario reconocer los nombres y usos de los siguientes componentes.
Componentes pequeños separados: Transistor: Dispositivo que amplifica una señal o abre y cierra un circuito
Circuito integrado: Dispositivo fabricado con material semiconductor que contiene varios transistores y realiza una tarea específica
Resistencia: Un componente eléctrico que limita o regula el flujo de corriente eléctrica en un circuito electrónico.
Condensador: Componente electrónico que almacena energía bajo la forma de un campo electroestático; se compone de dos placas de metal conductor separadas por material aislante.
Conector: Parte de un cable que se enchufa a un puerto o interfaz
Diodo electroluminiscente (LED): Dispositivo semiconductor que emite luz cuando la corriente lo atraviesa.
Subsistemas del PC Placa de circuito impreso (PCB, Printed Circuit Board): Una placa que tiene pistas conductoras superpuestas o impresas, en una o ambas caras. También puede contener capas internas de señal y planos de alimentación eléctrica y tierra. Microprocesadores, chips, circuitos integrados y otros componentes electrónicos se montan en las PCB.
Unidad de CD-ROM: Unidad de disco compacto con memoria de sólo lectura, que puede leer información de un CD-ROM
Unidad de procesamiento central (CPU): La parte de un computador que controla la operación de todas las otras partes. Obtiene instrucciones de la memoria y las decodifica. Realiza operaciones matemáticas y lógicas y traduce y ejecuta instrucciones.
Unidad de disquete: Una unidad de disco que lee y escribe información a una pieza circular con un disco plástico cubierto de metal de 3.5 pulgadas. Un disquete estándar puede almacenar aproximadamente 1 MB de información.
Unidad de disco duro: Un dispositivo de almacenamiento computacional que usa un conjunto discos rotatorios con cubierta magnética para almacenar datos o programas. Los discos duros se pueden encontrar en distintas capacidades de almacenamiento.
Microprocesador: Un microprocesador es un procesador que consiste en un chip de silicio diseñado con un propósito especial y físicamente muy pequeño. El microprocesador utiliza tecnología de circuitos de muy alta integración (VLSI , Very Large-Scale Integration) para integrar memoria , lógica y señales de control en un solo chip. Un microprocesador contiene una CPU.
Placa madre: La placa de circuito impreso más importante de un computador. La placa madre contiene el bus,microprocesador y los circuitos integrados usados para controlar cualquier dispositivo tal como teclado, pantallas de texto y graficos, puertos seriales y paralelos,jostyck e interfaces para el mouse.
Bus: Un conjunto de pistas eléctricas en la placa madre a través del cual se transmiten señales de datos y temporización de una parte del computador a otra.
Memoria de acceso aleatorio (RAM): También conocida como memoria de lectura/escritura; en ella se pueden escribir nuevos datos y se pueden leer los datos almacenados. La RAM requiere energía eléctrica para mantener el almacenamiento de datos. Si el computador se apaga o se le corta el suministro de energía, todos los datos almacenados en la RAM se pierden.
Memoria de sólo lectura (ROM): Memoria del computador en la cual hay datos que han sido pregrabados. Una vez que se han escrito datos en un chip ROM, estos no se pueden eliminar y sólo se pueden leer.
Unidad del sistema: La parte principal del PC, que incluye el armazón, el microprocesador, la memoria principal, bus y puertos. La unidad del sistema no incluye el teclado, monitor, ni ningún otro dispositivo externo conectado al computador.
Ranura de expansión: Un receptáculo en la placa madre donde se puede insertar una placa de circuito impreso para agregar capacidades al computador, La figura muestra las ranuras de expansión PCI (Peripheral Component Interconnect/Interconexión de componentes periféricos) y AGP (Accelerated Graphics Port/Puerto de gráficos acelerado). PCI es una conexión de alta velocidad para placas tales como NIC, módems internos y tarjetas de video. El puerto AGP provee una conexión de alta velocidad entre dispositivos gráficos y la memoria del sistema. La ranura AGP provee una conexión de alta velocidad para gráficos 3-D en sistemas computacionales.
Fuente de alimentación: Componente que suministra energía a un computador Componentes del backplane
Backplane: Un backplane es una placa de circuito electrónico que contiene circuitería y sócalos en los cuales se pueden insertar dispositivos electrónicos adicionales en otras placas de circuitos; en un computador, generalmente sinónimo de o parte de la tarjeta madre.
Tarjeta de interfaz de red (NIC): Placa de expansión insertada en el computador para que se pueda conectar a la red.
Tarjeta de video: Placa que se introduce en un PC para otorgarle capacidades de visualización
Tarjeta de sonido: Placa de expansión que permite que el computador manipule y reproduzca sonidos
Puerto paralelo: Interfaz que puede transferir más de un bit simultáneamente y que se utiliza para conectar dispositivos externos tales como impresoras
Puerto serial: Interfaz que se puede utilizar para la comunicación serial, en la cual sólo se puede transmitir un bit a la vez.
Puerto de ratón: Puerto diseñado para conectar un ratón al PC
Cable de alimentación: Cable utilizado para conectar un dispositivo eléctrico a un tomacorrientes a fin de suministrar energía eléctrica al dispositivo.
Puerto USB: Un conector de Bus Serial Universal (Universal Serial Bus). Un puerto USB conecta rápida y fácilmente dispositivos tales como un mouse o una impresora
Firewire: Una norma de interfaz de bus serial que ofrece comunicaciones de alta velocidad y servicios de datos isócronos de tiempo real.
Piense en los componentes internos de un PC como una red de dispositivos, todos los cuales se conectan al bus del sistema. En cierto sentido, un PC es un pequeña red informática.